An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles

نویسندگان

  • Soo-Jin Yeom
  • Hye-Jung Kim
  • Jung-Kul Lee
  • Dong-Eun Kim
  • Deok-Kun Oh
چکیده

Nitrilase from Rhodococcus rhodochrous ATCC 33278 hydrolyses both aliphatic and aromatic nitriles. Replacing Tyr-142 in the wild-type enzyme with the aromatic amino acid phenylalanine did not alter specificity for either substrate. However, the mutants containing non-polar aliphatic amino acids (alanine, valine and leucine) at position 142 were specific only for aromatic substrates such as benzonitrile, m-tolunitrile and 2-cyanopyridine, and not for aliphatic substrates. These results suggest that the hydrolysis of substrates probably involves the conjugated pi-electron system of the aromatic ring of substrate or Tyr-142 as an electron acceptor. Moreover, the mutants containing charged amino acids such as aspartate, glutamate, arginine and asparagine at position 142 displayed no activity towards any nitrile, possibly owing to the disruption of hydrophobic interactions with substrates. Thus aromaticity of substrate or amino acid at position 142 in R. rhodochrous nitrilase is required for enzyme activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and primary characterization of an amidase from Rhodococcus rhodochrous.

Amidase (EC 3.5.1.4) was purified to homogeneity from Rhodococcus rhodochrous M8 using isopropanol fractionation and exchange chromatography on Mono Q. The isolated amidase consists of four identical subunits with molecular weight 42+/-2 kD. The activity of the enzyme is maximal at 55-60 degrees C and within the pH range 5-8. The amidase from R. rhodochrous M8 is highly sensitive to such sulfhy...

متن کامل

Fungal His-Tagged Nitrilase from Gibberella intermedia: Gene Cloning, Heterologous Expression and Biochemical Properties

BACKGROUND Nitrilase is an important member of the nitrilase superfamiliy. It has attracted substantial interest from academia and industry for its function of converting nitriles directly into the corresponding carboxylic acids in recent years. Thus nitrilase has played a crucial role in production of commercial carboxylic acids in chemical industry and detoxification of nitrile-contaminated w...

متن کامل

Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species.

Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-C]VC was degraded by cell suspensions, with the production of greater than 66% CO(2) and 20% C-aqueous phase products an...

متن کامل

Mining of Microbial Genomes for the Novel Sources of Nitrilases

Next-generation DNA sequencing (NGS) has made it feasible to sequence large number of microbial genomes and advancements in computational biology have opened enormous opportunities to mine genome sequence data for novel genes and enzymes or their sources. In the present communication in silico mining of microbial genomes has been carried out to find novel sources of nitrilases. The sequences se...

متن کامل

A New Thermophilic Nitrilase from an Antarctic Hyperthermophilic Microorganism

Several environmental samples from Antarctica were collected and enriched to search for microorganisms with nitrilase activity. A new thermostable nitrilase from a novel hyperthermophilic archaea Pyrococcus sp. M24D13 was purified and characterized. The activity of this enzyme increased as the temperatures rise from 70 up to 85°C. Its optimal activity occurred at 85°C and pH 7.5. This new enzym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 415  شماره 

صفحات  -

تاریخ انتشار 2008